Bayes
1. Tenemos tres urnas: A con 3 bolas rojas y 5 negras, B con 2 bolas rojas y 1 negra y C con 2 bolas rojas y 3 negras. Escogemos una urna al azar y extraemos una bola. Si la bola ha sido roja, ¿cuál es la probabilidad de haber sido extraída de la urna A?
2. El 20% de los empleados de una empresa son ingenieros y otro 20 % son economistas. El 75% de los ingenieros ocupaun puesto directivo y el 50% de los economistas también, mientras que los no ingenieros y los no economistas solamente el 20% ocupa un puesto directivo. ¿Cuál es la probabilidad de que un empleado directivo elegido aleatoriamente sea ingeniero?
3. Tres maquinas A, B Y C producen el 45%, 30% y 25%, respectivamente del total de las piezas producidas en una fábrica. Los porcentajes de produccióndefectuosa de estas maquinas son del 3%, 4% y 5%. Si tomamos una pieza al azar y resulta defectuosa, ¿cuál es la probabilidad de haber sido producida por la maquina B?
4. La probabilidad de que haya un accidente en una fábrica que dispone de alarma es 0.1. La probabilidad de que suene esta sí se ha producido algún incidente es de 0.97 y la probabilidad de que suene si no ha sucedido ningún incidentees 0.02. En el supuesto de que haya funcionado la alarma, ¿cuál es la probabilidad de que no haya habido ningún incidente?
5. Una urna contiene dos monedas de bronce y tres de cobre. Otra urna contiene cuatro monedas de bronce y tres de cobre. Si se elige una urna al azar y se extrae una moneda al azar, ¿cuál es la probabilidad de que la moneda extraída sea de bronce?
6. En tres plantas, A, B yC, fabrican el 50 %, el 30 % y el 20 %, respectivamente, del total de los objetos de una empresa. Los porcentajes de producción defectuosa de estas plantas son, respectivamente, el 3 %, el 4 % y el 5 %. a) Si se selecciona un objeto al azar, ¿qué probabilidad tiene de salir defectuoso? b) Suponiendo que es defectuoso, ¿cuál es la probabilidad de que se haya producido en la planta A?
7. En uninstituto se ofertan tres modalidades excluyentes, M, P y Q, y dos idiomas excluyentes, alemán y francés. La modalidad M es elegida por un 50 % de los alumnos, la P por un 30 % y la Q por un 20 %. También se conoce que han elegido alemán el 80 % de los alumnos de la modalidad M, el 90 % de la modalidad P y el 75 % de la Q, habiendo elegido francés el resto de los alumnos. a) ¿Qué porcentaje deestudiantes del instituto ha elegido francés? b) Si se elige al azar un estudiante de francés, ¿cuál es la probabilidad de que sea de la modalidad M?
8. En un IES hay tres profesores de Matemáticas. Cuando un alumno se matricula en el centro tiene igual probabilidad de que le asignen uno y otro profesor de Matemáticas. La probabilidad de obtener como nota final un sobresaliente con el profesor A es0,3: la de obtenerlo con el profesor B es de 0,28; y la de obtenerlo con el profesor C es 0,35. a) Calcular la probabilidad de que un alumno matriculado en Matemáticas obtenga como nota final un sobresaliente. b) Sabiendo que un alumno ha obtenido un sobresaliente como nota final en Matemáticas, ¿cuál es la probabilidad de que le hubiesen asignado al profesor C?
9. Un determinado club tiene un 75 %de sus miembros que son mujeres y un 25 % que son hombres. De este club tiene teléfono móvil un 25 % de las mujeres y un 50 % de los hombres. a) Calcular el porcentaje de miembros de este club que no tienen teléfono móvil. b) Calcular la probabilidad de que un miembro de este club elegido al azar entre los que tienen teléfono móvil sea hombre.
10. Dos amigos comparten casa. El primero prepara lacomida el 40 % de los días y el resto de los días lo hace el segundo. El porcentaje de veces que se le quema al primero es el 5 %, mientras que el del segundo es el 8 %. Calcular la probabilidad de que un día, elegido al azar, la comida esté quemada. Si cierto día se ha quemado, calcular la probabilidad de que haya cocinado el primero.
11. En una pequeña ciudad hay dos cines. En el primero, el...
Regístrate para leer el documento completo.