numeros
La distribución de los números primos (línea azul) hasta el 400
En matemáticas, un número primo es un número natural mayor que 1 que tiene únicamente dos divisores distintos: él mismo y el 1.1 2 Los números primos se contraponen así a los compuestos, que son aquellos que tienen por lo menos un divisor natural distinto de sí mismos y de 1. El número 1, por convenio, nose considera ni primo ni compuesto.
Los números primos menores que 100 son los siguientes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97.3
La propiedad de ser primo se denomina primalidad. A veces se habla de número primo impar para referirse a cualquier número primo mayor que 2, ya que éste es el único número primo par. A veces se denota elconjunto de todos los números primos por {\mathbb {P}}.
El estudio de los números primos es una parte importante de la teoría de números, rama de las matemáticas que versa sobre las propiedades, básicamente aritméticas, 4 de los números enteros. Los números primos están presentes en algunas conjeturas centenarias tales como la hipótesis de Riema
Matemáticas anteriores a la Antigua Grecia[editar ·editar código]
Las muescas presentes en el hueso de Ishango, que data de hace más de 20.000 años (anterior por tanto a la aparición de la escritura) y que fue hallado por el arqueólogo Jean de Heinzelin de Braucourt,5 parecen aislar cuatro números primos: 11, 13, 17 y 19. Algunos arqueólogos interpretan este hecho como la prueba del conocimiento de los números primos. Con todo, existen muy pocoshallazgos que permitan discernir los conocimientos que tenía realmente el hombre de aquella época.6
Numerosas tablillas de arcilla seca atribuidas a las civilizaciones que se fueron sucediendo en Mesopotamia a lo largo del II milenio a.C. muestran la resolución de problemas aritméticos y atestiguan los conocimientos de la época. Los cálculos requerían conocer los inversos de los naturales, quetambién se han hallado en tablillas.7 En el sistema sexagesimal que empleaban los babilonios para escribir los números, los inversos de los divisores de potencias de 60 (números regulares) se calculan fácilmente; por ejemplo, dividir entre 24 equivale a multiplicar por 150 (2·60+30) y correr la coma sexagesimal dos lugares. El conocimiento matemático de los babilonios necesitaba una sólidacomprensión de la multiplicación, la división y la factorización de los naturales.
En las matemáticas egipcias, el cálculo de fracciones requería conocimientos sobre las operaciones, la división de naturales y la factorización. Los egipcios sólo operaban con las llamadas fracciones egipcias, suma de fracciones unitarias, es decir, aquellas cuyo numerador es 1, como {\tfrac {1}{2}},{\tfrac{1}{3}},{\tfrac {1}{4}},{\tfrac {1}{5}},\dots , por lo que las fracciones de numerador distinto de 1 se escribían como suma de inversos de naturales, a ser posible sin repetición \left({\tfrac {1}{2}}+{\tfrac {1}{6}}\right. en lugar de \left.{\tfrac {1}{3}}+{\tfrac {1}{3}}\right).8 Es por ello que, en cierta manera, tenían que conocer o intuir los números primos.9
Antigua Grecia[editar · editar código]Un fragmento de los Elementos de Euclides encontrado en Oxirrinco.
La primera prueba indiscutible del conocimiento de los números primos se remonta a alrededor del año 300 a. C. y se encuentra en los Elementos de Euclides (tomos VII a IX). Euclides define los números primos, demuestra que hay infinitos de ellos, define el máximo común divisor y el mínimo común múltiplo y proporciona unmétodo para determinarlos que hoy en día se conoce como el algoritmo de Euclides. Los Elementos contienen asimismo el teorema fundamental de la aritmética y la manera de construir un número perfecto a partir de un número primo de Mersenne.
La criba de Eratóstenes, atribuida a Eratóstenes de Cirene, es un método sencillo que permite encontrar números primos. Hoy en día, empero, los mayores números...
Regístrate para leer el documento completo.