Estadistica
5, 2, 4, 9, 7, 4, 5, 6, 5, 7, 7, 5, 5, 2, 10, 5, 6, 5, 4, 5, 8, 8, 4, 0, 8, 4, 8, 6, 6, 3, 6, 7, 6, 6, 7, 6, 7, 3, 5, 6, 9, 6, 1, 4, 6, 3, 5, 5, 6, 7.
Construir la tabla de distribución de frecuencias
xi
fi
Fi
ni
Ni
0
1
1
0.02
0.02
1
1
2
0.02
0.04
2
2
4
0.04
0.08
3
3
7
0.06
0.14
4
6
13
0.120.26
5
11
24
0.22
0.48
6
12
36
0.24
0.72
7
7
43
0.14
0.86
8
4
47
0.08
0.94
9
2
49
0.04
0.98
10
1
50
0.02
1.00
50
1.00
Es el valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.
La mediana se representa por Me.
La mediana se puede hallar sólo para variables cuantitativas.
Cálculo de la mediana
1 Ordenamoslos datos de menor a mayor.
2 Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.
2, 3, 4, 4, 5, 5, 5, 6, 6Me= 5
3 Si la serie tiene un número par de puntuaciones la mediana es la media entre las dos puntuaciones centrales.
7, 8, 9, 10, 11, 12Me= 9.5
Cálculo de la mediana para datos agrupados
La mediana se encuentra en el intervalo donde lafrecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.
Es decir tenemos que buscar el intervalo en el que se encuentre .
Li es el límite inferior de la clase donde se encuentra la mediana.
es la semisuma de las frecuencias absolutas.
Fi-1 es la frecuencia acumulada anterior a la clase mediana.
ai es la amplitud de la clase.
La mediana es independiente de lasamplitudes de los intervalos.
Ejemplo
Calcular la mediana de una distribución estadística que viene dada por la siguiente tabla:
fi
Fi
[60, 63)
5
5
[63, 66)
18
23
[66, 69)
42
65
[69, 72)
27
92
[72, 75)
8
100
100
100/2 = 50
Clase de la mediana: [66, 69)
Los pesos de los 65 empleados de una fábrica vienen dados por la siguiente tabla:
Peso
[50, 60)
[60, 70)
[70,80)
[80,90)
[90, 100)
[100, 110)
[110, 120)
fi
8
10
16
14
10
5
2
1 Construir la tabla de frecuencias.
2 Representar el histograma y el polígono de frecuencias.
xi
fi
Fi
ni
Ni
[50, 60)
55
8
8
0.12
0.12
[60, 70)
65
10
18
0.15
0.27
[70, 80)
75
16
34
0.24
0.51
[80,90)
85
14
48
0.22
0.73
[90, 100)
95
10
58
0.15
0.88
[100, 110)
105
5
63
0.080.96
[110, 120)
115
2
65
0.03
0.99
65
Histograma
Histograma
Un diagrama de sectores se puede utilizar para todo tipo de variables, pero se usa frecuentemente para las variables cualitativas.
Los datos se representan en un círculo, de modo que el ángulo de cada sector es proporcional a la frecuencia absoluta correspondiente.
El diagrama circular se construyecon la ayuda de un transportador de ángulos.
Ejemplo
En una clase de 30 alumnos, 12 juegan a baloncesto, 3 practican la natación, 4 juegan al fútbol y el resto no practica ningún deporte.
Alumnos
Ángulo
Baloncesto
12
144°
Natación
3
36°
Fútbol
9
108°
Sin deporte
6
72°
Total
30
360°
Definición de mediana
Es el valor que ocupa el lugar central de todos los datos cuandoéstos están ordenados de menor a mayor.
La mediana se representa por Me.
La mediana se puede hallar sólo para variables cuantitativas.
Cálculo de la mediana
1 Ordenamos los datos de menor a mayor.
2 Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.
2, 3, 4, 4, 5, 5, 5, 6, 6Me= 5
3 Si la serie tiene un número par de puntuaciones la mediana es lamedia entre las dos puntuaciones centrales.
7, 8, 9, 10, 11, 12Me= 9.5
Cálculo de la mediana para datos agrupados
La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.
Es decir tenemos que buscar el intervalo en el que se encuentre .
Li es el límite inferior de la clase donde se encuentra la mediana.
es la...
Regístrate para leer el documento completo.