Elipse

Páginas: 5 (1098 palabras) Publicado: 11 de abril de 2015
Elipse
La elipse es una línea curva, cerrada y plana cuya definición más usual es: La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante.
Historia:
La elipse, como curva geométrica, fue estudiada por Menecmo, investigada por Euclides, y su nombre se atribuye a Apolonio de Pérgamo. El foco y ladirectriz de la sección cónica de una elipse fueron estudiadas por Pappus. En 1602, Kepler creía que la órbita deMarte era ovalada, aunque más tarde descubrió que se trataba de una elipse con el Sol en un foco. De hecho, Kepler introdujo la palabra «focus» y publicó su descubrimiento en 1609. Halley, en 1705, demostró que el cometa que ahora lleva su nombre trazaba una órbita elíptica alrededor delSol
Puntos de una elipse: Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor (d(P,F1)+d(P,F2)=2a).
Por comodidad denotaremos por PQ la distancia entre dos puntos P y Q.
Si F1 y F2 son dos puntos de un plano, y 2a es unaconstante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:

donde  es la medida del semieje mayor de la elipse.
Ejes de una elipse: El eje mayor, 2a, es la mayor distancia entre dos puntos opuestos de la elipse. El resultado de la suma de las distancias de cualquier punto a los focos es constante y equivale al eje mayor. El eje menor 2b, es la menor distanciaentre dos puntos opuestos de la elipse. Los ejes de la elipse son perpendiculares entre sí.
Excentricidad de una elipse
La excentricidad ε (épsilon) de una elipse es la razón entre su semidistancia focal (longitud del segmento que parte del centro de la elipse y acaba en uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.
 , con 
Dado que  ,también vale la relación:

o el sistema:

La excentricidad indica la forma de una elipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.3 La designación tradicional de la excentricidad es la letra griega ε llamada épsilon.
(No se debe usar la letra e para designarla, porque se reserva para la base de los logaritmos naturales o neperianos. Véase: número e).Excentricidad angular de una elipse
La excentricidad angular  es el ángulo para el cual el valor de la función trigonométrica seno concuerda con la excentricidad , esto es:


Constante de la elipse:

En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes acada uno son PF1 (color azul) y PF2 (color rojo), y en la animación se ilustra como varían para diversos puntos P de la elipse.
Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una cantidad constante igual a la longitud 2a del eje mayor:
PF1 + PF2 = 2a
En la elipse de la imagen 2a vale10 y se ilustra, para un conjunto selecto de puntos, cómo se cumple la definición.
Directrices de la elipse:

La recta dD es una de las 2 directrices de la elipse.
Cada foco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz (ver ilustración de la derecha). La distancia de cualquier punto P de la elipse hasta el foco F es una fracción constante de la distanciaperpendicular de ese punto P a la directriz que resulta en la igualdad:

La relación entre estas dos distancias es la excentricidad  de la elipse. Esta propiedad (que puede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse.
Una elipse es el lugar geométrico de todos los puntos de un plano para los cuales se cumple que el cociente...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • elipse
  • Elipses
  • Elipse
  • Elipse
  • Elipse
  • Elipse
  • las elipses
  • Elipse

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS