circulo

Páginas: 8 (1981 palabras) Publicado: 6 de abril de 2013
Por D. José L. García Rodrigo

http://www.terra.es/personal/iesblecu/

1. La circunferencia.
1.1. Elementos de una circunferencia.
Definición 1. Se llama circunferencia al lugar geométrico formado por los puntos que equidistan
de otro punto llamado centro.








Se llama cuerda al segmento que une dos puntos cualquiera de la circunferencia.
Se llama diámetro a la cuerdaque pasa por el centro de la circunferencia.
Se llama radio al segmento que une el centro con un punto cualquiera de la circunferencia.
Se llama arco a cada una de las partes en las que una cuerda divide a la circunferencia.
Se llama semicircunferencia a cada una de las partes en las que un diámetro divide a la
circunferencia.
Se llama ángulo central al ángulo cuyo vértice coincide con elcentro de la circunferencia.

Teorema 1. La
recta diametral
perpendicular a una cuerda es
mediatriz de la misma, bisectriz del
ángulo central correspondiente, y
divide al arco en dos iguales.

Teorema 2. Dos cuerdas
iguales, equidistan del centro.

Teorema 3. Por tres
puntos no alineados pasa
una circunferencia y sólo
una.

1.2. Posiciones relativas
Definición 2. Sea C unacircunferencia de centro O y radio r. Sea P un punto del plano
Diremos que:
• P es exterior a la circunferencia si d(P,O) > r
• P está en la circunferencia si d(P,O) = r
• P es interior a la circunferencia si d(P,O) < r

Definición 3. Diremos que una recta es:
• secante a una circunferencia si se cortan en dos puntos.
• tangente a una circunferencia si se cortan en un punto.
• exterior a unacircunferencia si no se cortan.

Teorema 4. El radio de contacto es perpendicular a la tangente.
Teorema 5. Si por un punto exterior a una circunferencia se trazan dos tangentes, los segmentos
comprendidos entre dicho punto y los de contacto son iguales. La semirrecta que contiene al
segmento punto-centro es bisectriz del ángulo que forman las dos tangentes.
Teorema 6. En todo cuadriláterocircunscriptible las sumas de los lados opuestos son iguales
Definición 4. Sean:

C una circunferencia de centro O y radio R.
C ‘ una circunferencia de centro O’ y radio r.

D la distancia entre los centros O y O’
Diremos que las circunferencias son:
• Exteriores, si no tienen ningún punto en común y D > R + r.
• Interiores, si no tienen ningún punto en común y D < R - r.
• TangentesExteriores, si tienen un punto en común y D = R + r.
• Tangentes Interiores, si tienen un punto en común y D = R - r.
• Secantes si tienen dos puntos en común.
Dos circunferencias interiores que tienen el mismo centro se llaman Concéntricas.

2. Ángulos en la Circunferencia.
2.1. Ángulos.
Definición 5.
Llamaremos ángulo inscrito en una
circunferencia a todo aquél cuyo vértice está en ella y loslados son secantes.
La intersección del ángulo con la circunferencia nos da
además del vértice, un arco que diremos está
comprendido o abarcado por dicho ángulo.
Teorema 7. Todo ángulo inscrito en una circunferencia es
igual a la mitad del central que comprende el mismo arco.
Dem:

Caso 1º

Caso 2º


Caso 3º

OM = OA ⇒ OMA isósceles ⇒

ˆ
ˆ
ˆ
A = MAP + PAN =

ˆ
ˆ
ˆ
A = MAP− PAN =

ˆˆ
⇒M=A

=



MOP + PON =
2
2
1
ˆ  1ˆ
=  MOP + PON  = O
ˆ
2
2



MOP − PON =
2
2
1
ˆ  1ˆ
=  MOP − PON  = O
ˆ
2
2

ˆ
ˆ
ˆˆ
O = 180º-MOA = M + A
ˆˆ
M=A 
ˆ
ˆ
ˆ 1ˆ
⇒ O = 2A ⇒ A = O
ˆ = M + A
2
O ˆ ˆ


Definición 6. Llamaremos ángulo semiinscrito en una circunferencia
a todo aquél cuyo vértice está en ella y cuyos ladosson uno
tangente y otro secante.
La intersección del ángulo con la circunferencia nos da un arco que
diremos está comprendido o abarcado por dicho ángulo.
Teorema 8. Todo ángulo semiinscrito en una circunferencia es
igual a la mitad del central que abarca el mismo arco.
Dem:

semirrecta MA ⊥ AO 

ˆ
ˆ
 ⇒ A = AOP = O
2
AN ⊥ OP



=

Definición 7. Llamaremos ángulo...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • circular
  • El Circulo
  • el circulo
  • circulo
  • Circulo
  • Circulo
  • Circulas
  • Circulo

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS